Creatine is named from the Greek word for meat (kreas) because it was originally discovered in skeletal muscle. It plays a key role in tissues, like muscles and the brain, that use high amounts of energy. Because it concentrates in muscles, the best food sources are red meat, pork, lamb, poultry, and fish. While we can make some creatine in the body, persons not eating meat might not make sufficient creatine to optimize tissue status. Creatine as a dietary supplement may be more important to take as a supplement for vegans and vegetarians. Creatine is used in the phosphocreatine (phosphagen) system. This system regenerates ATP from ADP in tissues and is especially important in circumstances with high energy demand. Because of this role, creatine is often described as an ATP “buffer.” Creatine monohydrate has been the most scientifically studied form of creatine and has been the type of creatine used in virtually all the cognitive function studies [1].*
Supports mitochondrial efficiency*
Supports muscle performance*
Supports healthy cognitive function*
Creatine monohydrate is a non-GMO, gluten-free, and vegan ingredient.
The efficacy of creatine is dose-dependent (see Qualia Dosing Principles) in the range it’s commonly used (up to about 5 grams a day). The amount of creatine used can vary depending on the purpose of a formulation. If the goal is to quickly help promote muscle stores for sports performance uses, higher servings (3-5 grams) are typically recommended. If the goal is to augment the diet, a lower serving taken consistently over time can be sufficient. It’s been estimated that an omnivore diet provides about 1 gram of creatine a day [2,3] and that young adults make about 1 gram a day [2,4]. This combination of what we get in the diet and make (i.e., biosynthesis) is needed to offset the approximately 2 grams of creatine we lose every day. A low dose of creatine can contribute a significant degree to helping offset this daily loss [5].*
Supports mitochondrial structure and function*
Supports transcription factors associated with mitochondrial biogenesis (PGC-1α, TFAM)* [6]
Supports healthy mitochondrial structure and function* [6–8]
Supports mitochondrial DNA (mtDNA)* [6]
Supports mitochondrial membrane potential* [6,7]
Promotes exercise performance*
Supports the muscle pool of phosphocreatine to be used for ATP regeneration* [9–14]
Supports strength performance* [11–13,15–20]
Supports lean mass maintenance* [13,15–20]
Supports muscle structure and function* [11–13,15]
Supports energy generation in cardiac muscle* [21]
Other actions*
Supports cognitive functions related to memory, attention, and information processing speed* [1]
Supports AMP-activated protein kinase (AMPK) signaling* [6,9,22–24]
Supports neuroprotective functions* [7,8,25–28]
Complementary ingredients*
CoQ10 and lipoic acid – support mitochondrial function* [29]
L-carnitine and L-leucine – support muscle mass and strength* [30]
*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, cure, or prevent any disease.
References
[1]C. Xu, S. Bi, W. Zhang, L. Luo, Front. Nutr. 11 (2024) 1424972.
[2]J.T. Brosnan, R.P. da Silva, M.E. Brosnan, Amino Acids 40 (2011) 1325–1331.
[3]M.E. Brosnan, J.T. Brosnan, Amino Acids 48 (2016) 1785–1791.
[4]R. Cooper, F. Naclerio, J. Allgrove, A. Jimenez, J. Int. Soc. Sports Nutr. 9 (2012) 33.
[5]L. Blancquaert, A. Baguet, T. Bex, A. Volkaert, I. Everaert, J. Delanghe, M. Petrovic, C. Vervaet, S. De Henauw, D. Constantin-Teodosiu, P. Greenhaff, W. Derave, Br. J. Nutr. 119 (2018) 759–770.
[6]E. Barbieri, M. Guescini, C. Calcabrini, L. Vallorani, A.R. Diaz, C. Fimognari, B. Canonico, F. Luchetti, S. Papa, M. Battistelli, E. Falcieri, V. Romanello, M. Sandri, V. Stocchi, C. Ciacci, P. Sestili, Oxid. Med. Cell. Longev. 2016 (2016) 5152029.
[7]L.M. Rambo, L.R. Ribeiro, I.D. Della-Pace, D.N. Stamm, R. da Rosa Gerbatin, M. Prigol, S. Pinton, C.W. Nogueira, A.F. Furian, M.S. Oliveira, M.R. Fighera, L.F.F. Royes, Amino Acids 44 (2013) 857–868.
[8]P. Klivenyi, R.J. Ferrante, R.T. Matthews, M.B. Bogdanov, A.M. Klein, O.A. Andreassen, G. Mueller, M. Wermer, R. Kaddurah-Daouk, M.F. Beal, Nat. Med. 5 (1999) 347–350.
[9]R.B. Ceddia, G. Sweeney, J. Physiol. 555 (2004) 409–421.
[10]B. Banerjee, U. Sharma, K. Balasubramanian, M. Kalaivani, V. Kalra, N.R. Jagannathan, Magn. Reson. Imaging 28 (2010) 698–707.
[11]B. Gualano, V. DE Salles Painneli, H. Roschel, G.G. Artioli, M. Neves Jr, A.L. De Sá Pinto, M.E.R. Da Silva, M.R. Cunha, M.C.G. Otaduy, C.D.C. Leite, J.C. Ferreira, R.M. Pereira, P.C. Brum, E. Bonfá, A.H. Lancha Jr, Med. Sci. Sports Exerc. 43 (2011) 770–778.
[12]C.R.R. Alves, B.M. Santiago, F.R. Lima, M.C.G. Otaduy, A.L. Calich, A.C.C. Tritto, A.L. de Sá Pinto, H. Roschel, C.C. Leite, F.B. Benatti, E. Bonfá, B. Gualano, Arthritis Care Res. 65 (2013) 1449–1459.
[13]D.G. Burke, P.D. Chilibeck, G. Parise, D.G. Candow, D. Mahoney, M. Tarnopolsky, Med. Sci. Sports Exerc. 35 (2003) 1946–1955.
[14]J.T. Brosnan, M.E. Brosnan, Annu. Rev. Nutr. 27 (2007) 241–261.
[15]J.S. Volek, N.D. Duncan, S.A. Mazzetti, R.S. Staron, M. Putukian, A.L. Gómez, D.R. Pearson, W.J. Fink, W.J. Kraemer, Med. Sci. Sports Exerc. 31 (1999) 1147–1156.
[16]S.L. Nissen, R.L. Sharp, J. Appl. Physiol. 94 (2003) 651–659.
[17]R.B. Kreider, Mol. Cell. Biochem. 244 (2003) 89–94.
[18]L.A. Gotshalk, W.J. Kraemer, M.A.G. Mendonca, J.L. Vingren, A.M. Kenny, B.A. Spiering, D.L. Hatfield, M.S. Fragala, J.S. Volek, Eur. J. Appl. Physiol. 102 (2008) 223–231.
[19]L.A. Gotshalk, J.S. Volek, R.S. Staron, C.R. Denegar, F.C. Hagerman, W.J. Kraemer, Med. Sci. Sports Exerc. 34 (2002) 537–543.
[20]J.D. Branch, Int. J. Sport Nutr. Exerc. Metab. 13 (2003) 198–226.
[21]V. Saks, P. Dzeja, U. Schlattner, M. Vendelin, A. Terzic, T. Wallimann, J. Physiol. 571 (2006) 253–273.
[22]L. Zhang, X. Wang, J. Li, X. Zhu, F. Gao, G. Zhou, J. Agric. Food Chem. 65 (2017) 6991–6999.
[23]C.R.R. Alves, J.C. Ferreira, M.A. de Siqueira-Filho, C.R. Carvalho, A.H. Lancha Jr, B. Gualano, Amino Acids 43 (2012) 1803–1807.
[24]J.-S. Ju, J.L. Smith, P.J. Oppelt, J.S. Fisher, Am. J. Physiol. Endocrinol. Metab. 288 (2005) E347–52.
[25]G.J. Brewer, T.W. Wallimann, J. Neurochem. 74 (2000) 1968–1978.
[26]B. Valastro, A. Dekundy, W. Danysz, G. Quack, Behav. Brain Res. 197 (2009) 90–96.
[27]R.T. Matthews, L. Yang, B.G. Jenkins, R.J. Ferrante, B.R. Rosen, R. Kaddurah-Daouk, M.F. Beal, J. Neurosci. 18 (1998) 156–163.
[28]P.G. Sullivan, J.D. Geiger, M.P. Mattson, S.W. Scheff, Ann. Neurol. 48 (2000) 723–729.
[29]M.C. Rodriguez, J.R. MacDonald, D.J. Mahoney, G. Parise, M.F. Beal, M.A. Tarnopolsky, Muscle Nerve 35 (2007) 235–242.
[30]M. Evans, N. Guthrie, J. Pezzullo, T. Sanli, R.A. Fielding, A. Bellamine, Nutr. Metab. 14 (2017) 7.