VINEATROL®20 Grapevine Extract

Vineatrol®20 is a grapevine shoot extract rich in resveratrol monomers and oligomers. Resveratrol is best known as a calorie restriction mimetic (i.e., supports healthy aging functions), and for supporting metabolism, heart health, immunity, and cognition. Resveratrol derivatives have been the subject of thousands of pre-clinical and clinical research studies. While trans-resveratrol is the most studied of the resveratrol derivative family, some of the other resveratrol derivatives may have structure/function benefits not shared by trans-resveratrol, which could be more potent than trans-resveratrol for certain functions, and tend to be complementary when given together. In other words, there’s a complementarity in the mix of resveratrol derivatives that naturally occur in the grape plant. This complementarity has shown up in experiments done on Vineatrol®,  where it was a stronger antioxidant than resveratrol alone and a more potent sirtuin 1 (Sirt-1) activator than a resveratrol dimer. But what exactly are resveratrol monomers and oligomers? Trans-resveratrol is an example of a resveratrol monomer—a monomer is a molecule that can be bonded to other identical molecules—so think of it as one unit of resveratrol. Trans-ε-viniferin is a resveratrol dimer, which means it’s two identical resveratrol molecules bound together into an oligomer: Think of it as two units of resveratrol. But there are quite a few other resveratrol derivatives in the resveratrol oligomer family, since up to eight resveratrol molecules can couple together. The advantage of Vineatrol®20 is that it is standardized to contain at least 20% of these different resveratrols.*


TOP BENEFITS OF VINEATROL®20

Supports healthy aging*

Supports cognitive function*

Supports antioxidant defenses*


QUALIA’S VINEATROL®20 SOURCING

Vineatrol®20 is a grapevine shoot extract from Vitis vinifera (i.e., the common grapevine) grown and harvested in the famous Bordeaux vineyards.

Vineatrol®20 is triple standardized for: (1) trans-resveratrol >5%; (2) trans-ε-viniferin >5%; and (3) total resveratrol monomers and oligomers >20% (hence the 20 in the name). 

Vineatrol®20 is a registered trademark of ACTICHEM, a French company specializing in the development of resveratrol and resveratrol derivatives extracted from grapevines.

Vineatrol®20 is Non-GMO and Vegan.


VINEATROL®20 FORMULATING PRINCIPLES AND RATIONALE

When thinking about the serving of Vineatrol®20 there’s a few things to keep in mind. This grapevine extract has been standardized to contain at least 5% trans-resveratrol and not less than 20% resveratrol monomers and oligomers. When we include this extract in a formulation it’s because we want to give a range of resveratrol monomers and oligomers (not just trans-resveratrol). Focusing only on the trans-resveratrol content misses the big picture. The other thing to keep in mind is that resveratrols are not examples of more-is-better compounds. They are better thought of as a hormetic; something that in low to moderate amounts helps promote an adaptive response to stress, but which might not be as beneficial at very high servings especially if taken long-term (see Qualia Dosing Principles). Our goal with Vineatrol®20, as with all ingredient choices, is to select the appropriate serving keeping in mind both the ingredient and the other ingredients being used in a formulation. In other words, if we are also supplying other extracts with complementary polyphenols, we are likely to use less than if the only polyphenol-containing ingredient we were using was Vineatrol®20. Lastly, while high amounts of trans-resveratrol have been studied, when used as part of a grape extract, the amount of resveratrol in studies has typically been less than 10 mg and as low as 1 mg.*

 

RESVERATROL KEY MECHANISMS

Supports brain function*

Supports cognitive function in older adults* [1–9] 

Supports healthy cerebrovascular function* [1,8,10,11]

Supports neuroplasticity mechanisms* [12–14]

Supports brain-derived neurotrophic factor (BDNF) levels* [4–6,14–22]

Supports neuroendocrine signaling* [20,22]

Supports neuroprotective functions* [17,22–25]

Supports healthy neuroimmune and microglial function* [26–34]


Supports mitochondrial structure and function*

Supports healthy mitochondrial structure* [35–37]

Supports healthy mitochondrial function* [36,38,39]

Supports transcription factors associated with mitochondrial biogenesis (PGC-1α, NRF1, NRF2, TFAM)* [36–43]

Supports mitochondrial metabolic pathways of cell energy production [36,38,40,42–44]

Supports NAD+ pool* [38,39,44]


Supports healthy immune function*

Supports innate immunity* [45–58]

Supports adaptive immunity* [58–64]

Supports immune signaling* [59,65–72]

Supports immune tolerance* [58–63,73–79]


Supports a healthy gut microbiota*

Supports healthy gut microbiota* [80–100]

Supports gut barrier function* [83]

Supports mucosal immunity* [101–103]

Supports healthy gut immune signaling* [86]


Supports skin health*

Supports healthy dermal ECM structure (collagen, elastin)* [104–106]  

Influences melanin production* [107–109]

Supports skin antioxidant defenses* [105,106,110,111] 

Supports skin Nrf2 signaling and phase II defenses* [104,110,112]  

Supports healthy skin immune signaling* [105,106,113]

Supports skin in adapting to environmental stress* [114–121]

Influences skin autophagy* [122]


Promotes healthy aging and longevity*

Supports Nrf2 signaling and antioxidant defenses* [25,123–134]

Supports stem cell function* [135–147]

Supports telomerase activity* [135–137,148,149]

Supports anti-senescence functions* [136,137,142,149]

Supports AMPK signaling* [37–40,42–44,150,151]

Supports SIRT1* [38,40,41,43,150,152–154]

Supports mitochondrial uncoupling and thermogenesis* [36,39]

Supports clock gene expression and circadian rhythms* [155–158]


Complementary ingredients*

Apigenin - resveratrol is an apigenin bioenhancer* [159]

Piperine as a bioenhancer [74,160–163] and for cognitive function* [164]

Hawthorn for heart function support* [165]


*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.


REFERENCES

[1]R.H.X. Wong, D. Raederstorff, P.R.C. Howe, Nutrients 8 (2016).

[2]S.D. Anton, N. Ebner, J.M. Dzierzewski, Z.Z. Zlatar, M.J. Gurka, V.M. Dotson, J. Kirton, R.T. Mankowski, M. Marsiske, T.M. Manini, J. Altern. Complement. Med. 24 (2018) 725–732.

[3]Y. Yazir, T. Utkan, N. Gacar, F. Aricioglu, Physiol. Behav. 138 (2015) 297–304.

[4]J.-F. Ge, Y.-Y. Xu, N. Li, Y. Zhang, G.-L. Qiu, C.-H. Chu, C.-Y. Wang, G. Qin, F.-H. Chen, Endocrine Journal 62 (2015) 927–938.

[5]Y.-N. Zhao, W.-F. Li, F. Li, Z. Zhang, Y.-D. Dai, A.-L. Xu, C. Qi, J.-M. Gao, J. Gao, Biochem. Biophys. Res. Commun. 435 (2013) 597–602.

[6]J. Shen, L. Xu, C. Qu, H. Sun, J. Zhang, Behav. Brain Res. 349 (2018) 1–7.

[7]J.J. Thaung Zaw, P.R. Howe, R.H. Wong, Clin. Nutr. 40 (2021) 820–829.

[8]H.M. Evans, P.R.C. Howe, R.H.X. Wong, Nutrients 9 (2017).

[9]A.V. Witte, L. Kerti, D.S. Margulies, A. Flöel, J. Neurosci. 34 (2014) 7862–7870.

[10]D.O. Kennedy, E.L. Wightman, J.L. Reay, G. Lietz, E.J. Okello, A. Wilde, C.F. Haskell, Am. J. Clin. Nutr. 91 (2010) 1590–1597.

[11]E.L. Wightman, C.F. Haskell-Ramsay, J.L. Reay, G. Williamson, T. Dew, W. Zhang, D.O. Kennedy, Br. J. Nutr. 114 (2015) 1427–1437.

[12]L. Xu, Y. Yang, L. Gao, J. Zhao, Y. Cai, J. Huang, S. Jing, X. Bao, Y. Wang, J. Gao, H. Xu, X. Fan, Biochim. Biophys. Acta 1852 (2015) 1298–1310.

[13]N.B. Bottari, M.R.C. Schetinger, M.M. Pillat, T.V. Palma, H. Ulrich, M.S. Alves, V.M. Morsch, C. Melazzo, L.D. de Barros, J.L. Garcia, A.S. Da Silva, Mol. Neurobiol. 56 (2019) 2328–2338.

[14]S. Madhyastha, S. Sekhar, G. Rao, Int. J. Dev. Neurosci. 31 (2013) 580–585.

[15]M. Wiciński, M. Socha, M. Walczak, E. Wódkiewicz, B. Malinowski, S. Rewerski, K. Górski, K. Pawlak-Osińska, Nutrients 10 (2018).

[16]M. Rahvar, M. Nikseresht, S.M. Shafiee, F. Naghibalhossaini, M. Rasti, M.R. Panjehshahin, A.A. Owji, Neurochem. Res. 36 (2011) 761–765.

[17]L. Ge, L. Liu, H. Liu, S. Liu, H. Xue, X. Wang, L. Yuan, Z. Wang, D. Liu, Eur. J. Pharmacol. 768 (2015) 49–57.

[18]G. Li, G. Wang, J. Shi, X. Xie, N. Fei, L. Chen, N. Liu, M. Yang, J. Pan, W. Huang, Y. Xu, Neuropharmacology 133 (2018) 181–188.

[19]X.-H. Yang, S.-Q. Song, Y. Xu, Neuropsychiatr. Dis. Treat. 13 (2017) 2727–2736.

[20]S.H. Ali, R.M. Madhana, A. K V., E.R. Kasala, L.N. Bodduluru, S. Pitta, J.R. Mahareddy, M. Lahkar, Steroids 101 (2015) 37–42.

[21]J. Song, S.Y. Cheon, W. Jung, W.T. Lee, J.E. Lee, Int. J. Mol. Sci. 15 (2014) 15512–15529.

[22]C. Pang, L. Cao, F. Wu, L. Wang, G. Wang, Y. Yu, M. Zhang, L. Chen, W. Wang, W. Lv, L. Chen, J. Zhu, J. Pan, H. Zhang, Y. Xu, L. Ding, Neuropharmacology 97 (2015) 447–456.

[23]G. Wang, L. Chen, X. Pan, J. Chen, L. Wang, W. Wang, R. Cheng, F. Wu, X. Feng, Y. Yu, H.-T. Zhang, J.M. O’Donnell, Y. Xu, Oncotarget 7 (2016).

[24]Q. Zhang, X. Wang, X. Bai, Y. Xie, T. Zhang, S. Bo, X. Chen, Mol. Med. Rep. 16 (2017) 2095–2100.

[25]R. Moldzio, K. Radad, C. Krewenka, B. Kranner, J.C. Duvigneau, W.-D. Rausch, J. Neural Transm. 120 (2013) 1271–1280.

[26]S. Ma, L. Fan, J. Li, B. Zhang, Z. Yan, Int. J. Neurosci. 130 (2020) 817–825.

[27]L. Feng, L. Zhang, DNA Cell Biol. 38 (2019) 874–879.

[28]B. Qi, C. Shi, J. Meng, S. Xu, J. Liu, Int. J. Biochem. Cell Biol. 103 (2018) 56–64.

[29]J. Wiedemann, K. Rashid, T. Langmann, Biochem. Biophys. Res. Commun. 501 (2018) 239–245.

[30]X. Zhang, Q. Wu, Q. Zhang, Y. Lu, J. Liu, W. Li, S. Lv, M. Zhou, X. Zhang, C. Hang, Front. Neurosci. 11 (2017) 611.

[31]L.-L. Wang, D.-L. Shi, H.-Y. Gu, M.-Z. Zheng, J. Hu, X.-H. Song, Y.-L. Shen, Y.-Y. Chen, Mol. Med. Rep. 13 (2016) 4051–4057.

[32]L. Tao, Q. Ding, C. Gao, X. Sun, Int. Immunopharmacol. 34 (2016) 165–172.

[33]M. Kodali, V.K. Parihar, B. Hattiangady, V. Mishra, B. Shuai, A.K. Shetty, Sci. Rep. 5 (2015) 8075.

[34]J. Abraham, R.W. Johnson, Rejuvenation Res. 12 (2009) 445–453.

[35]R.M. Pollack, N. Barzilai, V. Anghel, A.S. Kulkarni, A. Golden, P. O’Broin, D.A. Sinclair, M.S. Bonkowski, A.J. Coleville, D. Powell, S. Kim, R. Moaddel, D. Stein, K. Zhang, M. Hawkins, J.P. Crandall, J. Gerontol. A Biol. Sci. Med. Sci. 72 (2017) 1703–1709.

[36]M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Cell 127 (2006) 1109–1122.

[37]J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Nature 444 (2006) 337–342.

[38]N.L. Price, A.P. Gomes, A.J.Y. Ling, F.V. Duarte, A. Martin-Montalvo, B.J. North, B. Agarwal, L. Ye, G. Ramadori, J.S. Teodoro, B.P. Hubbard, A.T. Varela, J.G. Davis, B. Varamini, A. Hafner, R. Moaddel, A.P. Rolo, R. Coppari, C.M. Palmeira, R. de Cabo, J.A. Baur, D.A. Sinclair, Cell Metab. 15 (2012) 675–690.

[39]J.-H. Um, S.-J. Park, H. Kang, S. Yang, M. Foretz, M.W. McBurney, M.K. Kim, B. Viollet, J.H. Chung, Diabetes 59 (2010) 554–563.

[40]S. Timmers, E. Konings, L. Bilet, R.H. Houtkooper, T. van de Weijer, G.H. Goossens, J. Hoeks, S. van der Krieken, D. Ryu, S. Kersten, E. Moonen-Kornips, M.K.C. Hesselink, I. Kunz, V.B. Schrauwen-Hinderling, E. Blaak, J. Auwerx, P. Schrauwen, Cell Metab. 14 (2011) 612–622.

[41]T.D. Scribbans, J.K. Ma, B.A. Edgett, K.A. Vorobej, A.S. Mitchell, J.G.E. Zelt, C.A. Simpson, J. Quadrilatero, B.J. Gurd, Appl. Physiol. Nutr. Metab. 39 (2014) 1305–1313.

[42]B. Dasgupta, J. Milbrandt, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 7217–7222.

[43]J.M. Ajmo, X. Liang, C.Q. Rogers, B. Pennock, M. You, Am. J. Physiol. Gastrointest. Liver Physiol. 295 (2008) G833–42.

[44]S.-J. Park, F. Ahmad, A. Philp, K. Baar, T. Williams, H. Luo, H. Ke, H. Rehmann, R. Taussig, A.L. Brown, M.K. Kim, M.A. Beaven, A.B. Burgin, V. Manganiello, J.H. Chung, Cell 148 (2012) 421–433.

[45]J. Li, B. Wang, Y. Luo, Q. Zhang, Y. Bian, R. Wang, Mol. Immunol. 122 (2020) 156–162.

[46]Y.-F. Zhang, Q.-M. Liu, Y.-Y. Gao, B. Liu, H. Liu, M.-J. Cao, X.-W. Yang, G.-M. Liu, Food Funct. 10 (2019) 2030–2039.

[47]S.-Y. Han, J.-Y. Bae, S.-H. Park, Y.-H. Kim, J.H.Y. Park, Y.-H. Kang, J. Nutr. 143 (2013) 632–639.

[48]D.M. André, M.C. Calixto, C. Sollon, E.C. Alexandre, L.O. Leiria, N. Tobar, G.F. Anhê, E. Antunes, Int. Immunopharmacol. 38 (2016) 298–305.

[49]K. Bozdemir, E. Şahin, N. Altintoprak, N.B. Muluk, B.P. Cengiz, M. Acar, C. Cingi, Clin. Invest. Med. 39 (2016) E63–72.

[50]J. Chen, H. Zhou, J. Wang, B. Zhang, F. Liu, J. Huang, J. Li, J. Lin, J. Bai, R. Liu, Int. Immunopharmacol. 25 (2015) 43–48.

[51]Y. Nakagami, S. Suzuki, J.L. Espinoza, L. Vu Quang, M. Enomoto, S. Takasugi, A. Nakamura, T. Nakayama, H. Tani, I. Hanamura, A. Takami, Nutrients 11 (2019).

[52]S. Liu, Y. Du, K. Shi, Y. Yang, Z. Yang, Am. J. Transl. Res. 11 (2019) 5212–5226.

[53]C. Leischner, M. Burkard, M.M. Pfeiffer, U.M. Lauer, C. Busch, S. Venturelli, Nutr. J. 15 (2016) 47.

[54]Q. Li, T. Huyan, L.-J. Ye, J. Li, J.-L. Shi, Q.-S. Huang, J. Agric. Food Chem. 62 (2014) 10928–10935.

[55]T. Li, G.-X. Fan, W. Wang, T. Li, Y.-K. Yuan, Int. Immunopharmacol. 7 (2007) 1221–1231.

[56]R. Falchetti, M.P. Fuggetta, G. Lanzilli, M. Tricarico, G. Ravagnan, Life Sci. 70 (2001) 81–96.

[57]T.-H. Huang, C.-C. Chen, H.-M. Liu, T.-Y. Lee, S.-H. Shieh, Sci. Rep. 7 (2017) 2705.

[58]M. Shabani, A. Sadeghi, H. Hosseini, M. Teimouri, R. Babaei Khorzoughi, P. Pasalar, R. Meshkani, Sci. Rep. 10 (2020) 3791.

[59]J.L. Espinoza, L.Q. Trung, P.T. Inaoka, K. Yamada, D.T. An, S. Mizuno, S. Nakao, A. Takami, Oxid. Med. Cell. Longev. 2017 (2017) 6781872.

[60]N.-H. Guo, X. Fu, F.-M. Zi, Y. Song, S. Wang, J. Cheng, Int. Immunopharmacol. 73 (2019) 181–192.

[61]B.B.-C. Weng, W.-S. Lin, J.-C. Chang, R.Y.-Y. Chiou, Int. J. Mol. Med. 38 (2016) 1895–1904.

[62]H. Yang, A. Zhang, Y. Zhang, S. Ma, C. Wang, J. Stroke Cerebrovasc. Dis. 25 (2016) 1914–1921.

[63]J. Yao, C. Wei, J.-Y. Wang, R. Zhang, Y.-X. Li, L.-S. Wang, World J. Gastroenterol. 21 (2015) 6572–6581.

[64]J. Yuan, L. Lu, Z. Zhang, S. Zhang, Rejuvenation Res. 15 (2012) 507–515.

[65]H. Ghanim, C.L. Sia, S. Abuaysheh, K. Korzeniewski, P. Patnaik, A. Marumganti, A. Chaudhuri, P. Dandona, J. Clin. Endocrinol. Metab. 95 (2010) E1–8.

[66]J. Tomé-Carneiro, M. Gonzálvez, M. Larrosa, M.J. Yáñez-Gascón, F.J. García-Almagro, J.A. Ruiz-Ros, M.T. García-Conesa, F.A. Tomás-Barberán, J.C. Espín, Am. J. Cardiol. 110 (2012) 356–363.

[67]R.C.S. Macedo, A. Vieira, D.P. Marin, R. Otton, Chem. Biol. Interact. 227 (2015) 89–95.

[68]H.S. Zahedi, S. Jazayeri, R. Ghiasvand, M. Djalali, M.R. Eshraghian, Int. J. Prev. Med. 4 (2013) S1–4.

[69]E. Jo, R. Bartosh, A.T. Auslander, D. Directo, A. Osmond, M.W. Wong, Sports (Basel) 7 (2019).

[70]S. Bo, V. Ponzo, G. Ciccone, A. Evangelista, F. Saba, I. Goitre, M. Procopio, G.F. Pagano, M. Cassader, R. Gambino, Pharmacol. Res. 111 (2016) 896–905.

[71]A.Z. Javid, R. Hormoznejad, H.A. Yousefimanesh, M.H. Haghighi-Zadeh, M. Zakerkish, Diabetes Metab. Syndr. 13 (2019) 2769–2774.

[72]S. Bo, G. Ciccone, A. Castiglione, R. Gambino, F. De Michieli, P. Villois, M. Durazzo, P. Cavallo-Perin, M. Cassader, Curr. Med. Chem. 20 (2013) 1323–1331.

[73]A.L. de B. Oliveira, V.V.S. Monteiro, K.C. Navegantes-Lima, J.F. Reis, R. de S. Gomes, D.V.S. Rodrigues, S.L. de F. Gaspar, M.C. Monteiro, Nutrients 9 (2017).

[74]N. Pannu, A. Bhatnagar, Inflammopharmacology 28 (2020) 719–735.

[75]K.A.O. Gandy, J. Zhang, P. Nagarkatti, M. Nagarkatti, J. Neuroimmune Pharmacol. 14 (2019) 462–477.

[76]Z.-L. Wang, X.-F. Luo, M.-T. Li, D. Xu, S. Zhou, H.-Z. Chen, N. Gao, Z. Chen, L.-L. Zhang, X.-F. Zeng, PLoS One 9 (2014) e114792.

[77]Z. Fonseca-Kelly, M. Nassrallah, J. Uribe, R.S. Khan, K. Dine, M. Dutt, K.S. Shindler, Front. Neurol. 3 (2012) 84.

[78]K.S. Shindler, E. Ventura, M. Dutt, P. Elliott, D.C. Fitzgerald, A. Rostami, J. Neuroophthalmol. 30 (2010) 328–339.

[79]Z. Wenbin, G. Guojun, West Indian Med. J. 63 (2014) 20–25.

[80]Y.-L. Tain, W.-C. Lee, K.L.H. Wu, S. Leu, J.Y.H. Chan, Mol. Nutr. Food Res. (2018) e1800066.

[81]Y. Zheng, W. Wu, G. Hu, L. Qiu, S. Meng, C. Song, L. Fan, Z. Zhao, X. Bing, J. Chen, Fish Shellfish Immunol. 77 (2018) 200–207.

[82]L. Zhao, Q. Zhang, W. Ma, F. Tian, H. Shen, M. Zhou, Food Funct. 8 (2017) 4644–4656.

[83]J.K. Bird, D. Raederstorff, P. Weber, R.E. Steinert, Adv. Nutr. 8 (2017) 839–849.

[84]A.S. Korsholm, T.N. Kjær, M.J. Ornstrup, S.B. Pedersen, Int. J. Mol. Sci. 18 (2017).

[85]M.M. Sung, T.T. Kim, E. Denou, C.-L.M. Soltys, S.M. Hamza, N.J. Byrne, G. Masson, H. Park, D.S. Wishart, K.L. Madsen, J.D. Schertzer, J.R.B. Dyck, Diabetes 66 (2017) 418–425.

[86]M. Larrosa, M.J. Yañéz-Gascón, M.V. Selma, A. González-Sarrías, S. Toti, J.J. Cerón, F. Tomás-Barberán, P. Dolara, J.C. Espín, J. Agric. Food Chem. 57 (2009) 2211–2220.

[87]J.M. Walker, P. Eckardt, J.O. Aleman, J.C. da Rosa, Y. Liang, T. Iizumi, S. Etheve, M.J. Blaser, J. L Breslow, P.R. Holt, Transl. Res. 4 (2019) 122–135.

[88]P. Wang, J. Wang, D. Li, W. Ke, F. Chen, X. Hu, J. Nutr. Biochem. 81 (2020) 108363.

[89]H.R. Alrafas, P.B. Busbee, K.N. Chitrala, M. Nagarkatti, P. Nagarkatti, J. Clin. Med. Res. 9 (2020).

[90]K. Chen, H. Zhao, L. Shu, H. Xing, C. Wang, C. Lu, G. Song, Int. J. Food Sci. Nutr. (2020) 1–14.

[91]P. Wang, J. Gao, W. Ke, J. Wang, D. Li, R. Liu, Y. Jia, X. Wang, X. Chen, F. Chen, X. Hu, Free Radic. Biol. Med. 156 (2020) 83–98.

[92]S. Hui, Y. Liu, L. Huang, L. Zheng, M. Zhou, H. Lang, X. Wang, L. Yi, M. Mi, Int. J. Obes. 44 (2020) 1678–1690.

[93]Y. Ma, S. Liu, H. Shu, J. Crawford, Y. Xing, F. Tao, Brain Behav. Immun. 87 (2020) 455–464.

[94]F. Li, Y. Han, X. Cai, M. Gu, J. Sun, C. Qi, T. Goulette, M. Song, Z. Li, H. Xiao, Food Funct. 11 (2020) 1063–1073.

[95]N. Sreng, S. Champion, J.-C. Martin, S. Khelaifia, J.E. Christensen, R. Padmanabhan, V. Azalbert, V. Blasco-Baque, P. Loubieres, L. Pechere, J.-F. Landrier, R. Burcelin, E. Sérée, J. Nutr. Biochem. 72 (2019) 108218.

[96]H.R. Alrafas, P.B. Busbee, M. Nagarkatti, P.S. Nagarkatti, J. Leukoc. Biol. 106 (2019) 467–480.

[97]J.D. Jaimes, V. Jarosova, O. Vesely, C. Mekadim, J. Mrazek, P. Marsik, J. Killer, K. Smejkal, P. Kloucek, J. Havlik, Molecules 24 (2019).

[98]P. Wang, D. Li, W. Ke, D. Liang, X. Hu, F. Chen, Int. J. Obes. 44 (2020) 213–225.

[99]C.L. Campbell, R. Yu, F. Li, Q. Zhou, D. Chen, C. Qi, Y. Yin, J. Sun, Diabetes Metab. Syndr. Obes. 12 (2019) 97–107.

[100]W. Liao, X. Yin, Q. Li, H. Zhang, Z. Liu, X. Zheng, L. Zheng, X. Feng, Molecules 23 (2018).

[101]Z. Gan, W. Wei, Y. Li, J. Wu, Y. Zhao, L. Zhang, T. Wang, X. Zhong, Molecules 24 (2019).

[102]J. Al Azzaz, A. Rieu, V. Aires, D. Delmas, J. Chluba, P. Winckler, M.-A. Bringer, J. Lamarche, D. Vervandier-Fasseur, F. Dalle, P. Lapaquette, J. Guzzo, Front. Immunol. 9 (2018) 3149.

[103]Y. Mayangsari, T. Suzuki, J. Agric. Food Chem. 66 (2018) 12666–12674.

[104]J. Kim, J. Oh, J.N. Averilla, H.J. Kim, J.-S. Kim, J.-S. Kim, J. Food Sci. 84 (2019) 1600–1608.

[105]E.D. Lephart, M.B. Andrus, Exp. Biol. Med. 242 (2017) 1482–1489.

[106]E.D. Lephart, J.M. Sommerfeldt, M.B. Andrus, J. Funct. Foods 10 (2014) 377–384.

[107]T.H. Lee, J.O. Seo, S.-H. Baek, S.Y. Kim, Biomol. Ther. 22 (2014) 35–40.

[108]Q. Liu, C. Kim, Y.H. Jo, S.B. Kim, B.Y. Hwang, M.K. Lee, Molecules 20 (2015) 16933–16945.

[109]R.A. Newton, A.L. Cook, D.W. Roberts, J.H. Leonard, R.A. Sturm, J. Invest. Dermatol. 127 (2007) 2216–2227.

[110]J. Soeur, J. Eilstein, G. Léreaux, C. Jones, L. Marrot, Free Radic. Biol. Med. 78 (2015) 213–223.

[111]Y. Ido, A. Duranton, F. Lan, K.A. Weikel, L. Breton, N.B. Ruderman, PLoS One 10 (2015) e0115341.

[112]Y. Liu, F. Chan, H. Sun, J. Yan, D. Fan, D. Zhao, J. An, D. Zhou, Eur. J. Pharmacol. 650 (2011) 130–137.

[113]X. Zhu, Q. Liu, M. Wang, M. Liang, X. Yang, X. Xu, H. Zou, J. Qiu, PLoS One 6 (2011) e27081.

[114]K. Park, J.-H. Lee, Oncol. Rep. 19 (2008) 413–417.

[115]F. Zhou, X. Huang, Y. Pan, D. Cao, C. Liu, Y. Liu, A. Chen, Biochem. Biophys. Res. Commun. 499 (2018) 662–668.

[116]S. Reagan-Shaw, F. Afaq, M.H. Aziz, N. Ahmad, Oncogene 23 (2004) 5151–5160.

[117]M.A. Choi, J.K. Seok, J.W. Lee, S.Y. Lee, Y.M. Kim, Y.C. Boo, J. Soc. Cosmet. Sci. Korea 44 (2018) 249–258.

[118]M.-H. Tsai, L.-F. Hsu, C.-W. Lee, Y.-C. Chiang, M.-H. Lee, J.-M. How, C.-M. Wu, C.-L. Huang, I.-T. Lee, Int. J. Biochem. Cell Biol. 88 (2017) 113–123.

[119]J.-W. Shin, H.-S. Lee, J.-I. Na, C.-H. Huh, K.-C. Park, H.-R. Choi, Int. J. Mol. Sci. 21 (2020).

[120]C. Sticozzi, G. Belmonte, F. Cervellati, X.M. Muresan, F. Pessina, Y. Lim, H.J. Forman, G. Valacchi, Free Radic. Biol. Med. 69 (2014) 50–57.

[121]C. Sticozzi, F. Cervellati, X.M. Muresan, C. Cervellati, G. Valacchi, Food Funct. 5 (2014) 2348–2356.

[122]D.K. Mostafa, S.I. Omar, A.A. Abdellatif, O.A. Sorour, O.A. Nayel, M.R.A. Al Obaidi, Curr. Mol. Pharmacol. (2020).

[123]S. Seyyedebrahimi, H. Khodabandehloo, E. Nasli Esfahani, R. Meshkani, Acta Diabetol. 55 (2018) 341–353.

[124]T. Farkhondeh, S.L. Folgado, A.M. Pourbagher-Shahri, M. Ashrafizadeh, S. Samarghandian, Biomed. Pharmacother. 127 (2020) 110234.

[125]X. Wang, H. Fang, G. Xu, Y. Yang, R. Xu, Q. Liu, X. Xue, J. Liu, H. Wang, Diabetes Metab. Syndr. Obes. 13 (2020) 1061–1075.

[126]M. Sami-Ur-Rasheed, M.K. Tripathi, D.K. Patel, M.P. Singh, Protein Pept. Lett. (2020).

[127]H. Hosseini, M. Teimouri, M. Shabani, M. Koushki, R. Babaei Khorzoughi, F. Namvarjah, P. Izadi, R. Meshkani, Int. J. Biochem. Cell Biol. 119 (2020) 105667.

[128]N. Lian, S. Zhang, J. Huang, T. Lin, Q. Lin, Lung 198 (2020) 323–331.

[129]G. Wang, X. Xie, L. Yuan, J. Qiu, W. Duan, B. Xu, X. Chen, Biofactors 46 (2020) 441–453.

[130]A.A. Javkhedkar, Y. Quiroz, B. Rodriguez-Iturbe, N.D. Vaziri, M.F. Lokhandwala, A.A. Banday, Am. J. Physiol. Regul. Integr. Comp. Physiol. 308 (2015) R840–6.

[131]B. Wang, J. Sun, L. Li, J. Zheng, Y. Shi, G. Le, Food Funct. 5 (2014) 1452–1463.

[132]P. Brasnyó, G.A. Molnár, M. Mohás, L. Markó, B. Laczy, J. Cseh, E. Mikolás, I.A. Szijártó, A. Mérei, R. Halmai, L.G. Mészáros, B. Sümegi, I. Wittmann, Br. J. Nutr. 106 (2011) 383–389.

[133]Y.K. Gupta, S. Briyal, G. Chaudhary, Pharmacol. Biochem. Behav. 71 (2002) 245–249.

[134]S.S. Leonard, C. Xia, B.-H. Jiang, B. Stinefelt, H. Klandorf, G.K. Harris, X. Shi, Biochem. Biophys. Res. Commun. 309 (2003) 1017–1026.

[135]V.P. Pearce, J. Sherrell, Z. Lou, L. Kopelovich, W.E. Wright, J.W. Shay, Oncogene 27 (2008) 2365–2374.

[136]L. Xia, X.X. Wang, X.S. Hu, X.G. Guo, Y.P. Shang, H.J. Chen, C.L. Zeng, F.R. Zhang, J.Z. Chen, Br. J. Pharmacol. 155 (2008) 387–394.

[137]X.-B. Wang, L. Zhu, J. Huang, Y.-G. Yin, X.-Q. Kong, Q.-F. Rong, A.-W. Shi, K.-J. Cao, Chin. Med. J. 124 (2011) 4310–4315.

[138]M.L. Balestrieri, C. Schiano, F. Felice, A. Casamassimi, A. Balestrieri, L. Milone, L. Servillo, C. Napoli, J. Biochem. 143 (2008) 179–186.

[139]L. Ling, S. Gu, Y. Cheng, Mol. Med. Rep. 15 (2017) 1188–1194.

[140]X.-H. Chen, Z.-G. Shi, H.-B. Lin, F. Wu, F. Zheng, C.-F. Wu, M.-W. Huang, Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 6352–6359.

[141]H. Zhang, Z. Zhai, Y. Wang, J. Zhang, H. Wu, Y. Wang, C. Li, D. Li, L. Lu, X. Wang, J. Chang, Q. Hou, Z. Ju, D. Zhou, A. Meng, Free Radic. Biol. Med. 54 (2013) 40–50.

[142]Y.-J. Lv, Y. Yang, B.-D. Sui, C.-H. Hu, P. Zhao, L. Liao, J. Chen, L.-Q. Zhang, T.-T. Yang, S.-F. Zhang, Y. Jin, Theranostics 8 (2018) 2387–2406.

[143]H. Liu, S. Zhang, L. Zhao, Y. Zhang, Q. Li, X. Chai, Y. Zhang, Stem Cells Int. 2016 (2016) 2524092.

[144]I.I. Suvorova, A.R. Knyazeva, A.V. Petukhov, N.D. Aksenov, V.A. Pospelov, Cell Death Discov 5 (2019) 61.

[145]Y.-J. Wang, P. Zhao, B.-D. Sui, N. Liu, C.-H. Hu, J. Chen, C.-X. Zheng, A.-Q. Liu, K. Xuan, Y.-P. Pan, Y. Jin, Exp. Mol. Med. 50 (2018) 1–15.

[146]T.-S. Chen, C.-H. Kuo, C.H. Day, L.-F. Pan, R.-J. Chen, B.-C. Chen, V.V. Padma, Y.-M. Lin, C.-Y. Huang, J. Cell. Physiol. 234 (2019) 20443–20452.

[147]Z. Safaeinejad, M. Nabiuni, M. Peymani, K. Ghaedi, M.H. Nasr-Esfahani, H. Baharvand, Eur. J. Cell Biol. 96 (2017) 665–672.

[148]F. Uchiumi, T. Watanabe, S. Hasegawa, T. Hoshi, Y. Higami, S.-I. Tanuma, Curr. Aging Sci. 4 (2011) 1–7.

[149]J. Li, C.-X. Zhang, Y.-M. Liu, K.-L. Chen, G. Chen, Oncotarget 8 (2017) 65717–65729.

[150]K.P. Goh, H.Y. Lee, D.P. Lau, W. Supaat, Y.H. Chan, A.F.Y. Koh, Int. J. Sport Nutr. Exerc. Metab. 24 (2014) 2–13.

[151]C.E. Park, M.-J. Kim, J.H. Lee, B.-I. Min, H. Bae, W. Choe, S.-S. Kim, J. Ha, Exp. Mol. Med. 39 (2007) 222–229.

[152]P. Zhang, Y. Li, Y. Du, G. Li, L. Wang, F. Zhou, Transplant. Proc. 48 (2016) 3378–3386.

[153]K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.-L. Zhang, B. Scherer, D.A. Sinclair, Nature 425 (2003) 191–196.

[154]S.-C. Hsu, S.-M. Huang, A. Chen, C.-Y. Sun, S.-H. Lin, J.-S. Chen, S.-T. Liu, Y.-J. Hsu, Int. J. Biochem. Cell Biol. 53 (2014) 361–371.

[155]J. Miranda, M.P. Portillo, J.A. Madrid, N. Arias, M.T. Macarulla, M. Garaulet, Br. J. Nutr. 110 (2013) 1421–1428.

[156]F. Pifferi, A. Dal-Pan, S. Languille, F. Aujard, Oxid. Med. Cell. Longev. 2013 (2013) 187301.

[157]J.R. Leheste, G. Torres, Front. Mol. Neurosci. 8 (2015) 61.

[158]L. Sun, Y. Wang, Y. Song, X.-R. Cheng, S. Xia, M.R.T. Rahman, Y. Shi, G. Le, Biochem. Biophys. Res. Commun. 458 (2015) 86–91.

[159]J.-A. Lee, S.K. Ha, E. Cho, I. Choi, Nutrients 7 (2015) 9650–9661.

[160]J.J. Johnson, M. Nihal, I.A. Siddiqui, C.O. Scarlett, H.H. Bailey, H. Mukhtar, N. Ahmad, Mol. Nutr. Food Res. 55 (2011) 1169–1176.

[161]K.R. Polley, N. Jenkins, P. O’Connor, K. McCully, Appl. Physiol. Nutr. Metab. 41 (2016) 26–32.

[162]W. Huang, Z. Chen, Q. Wang, M. Lin, S. Wu, Q. Yan, F. Wu, X. Yu, X. Xie, G. Li, Y. Xu, J. Pan, Metab. Brain Dis. 28 (2013) 585–595.

[163]Y. Xu, C. Zhang, F. Wu, X. Xu, G. Wang, M. Lin, Y. Yu, Y. An, J. Pan, Metab. Brain Dis. 31 (2016) 837–848.

[164]E.L. Wightman, J.L. Reay, C.F. Haskell, G. Williamson, T.P. Dew, D.O. Kennedy, Br. J. Nutr. 112 (2014) 203–213.

[165]Y. Zhu, B. Feng, S. He, Z. Su, G. Zheng, Phytomedicine 40 (2018) 20–26.